Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Open Forum Infectious Diseases ; 8(SUPPL 1):S77, 2021.
Article in English | EMBASE | ID: covidwho-1746783

ABSTRACT

Background. T cells are central to the early identification and clearance of viral infections and support antibody generation by B cells, making them desirable for assessing the immune response to SARS-CoV-2 infection and vaccines. We combined 2 high-throughput immune profiling methods to create a quantitative picture of the SARS-CoV-2 T-cell response that is highly sensitive, durable, diagnostic, and discriminatory between natural infection and vaccination. Methods. We deeply characterized 116 convalescent COVID-19 subjects by experimentally mapping CD8 and CD4 T-cell responses via antigen stimulation to 545 Human Leukocyte Antigen (HLA) class I and 284 class II viral peptides. We also performed T-cell receptor (TCR) repertoire sequencing on 1815 samples from 1521 PCR-confirmed SARS-CoV-2 cases and 3500 controls to identify shared public TCRs from SARS-CoV-2-associated CD8 and CD4 T cells. Combining these approaches with additional samples from vaccinated individuals, we characterized the response to natural infection as well as vaccination by separating responses to spike protein from other viral targets. Results. We find that T-cell responses are often driven by a few immunodominant, HLA-restricted epitopes. As expected, the SARS-CoV-2 T-cell response peaks about 1-2 weeks after infection and is detectable at least several months after recovery. Applying these data, we trained a classifier to diagnose past SARS-CoV-2 infection based solely on TCR sequencing from blood samples and observed, at 99.8% specificity, high sensitivity soon after diagnosis (Day 3-7 = 85.1%;Day 8-14 = 94.8%) that persists after recovery (Day 29+/convalescent = 95.4%). Finally, by evaluating TCRs binding epitopes targeting all non-spike SARS-CoV-2 proteins, we were able to separate natural infection from vaccination with > 99% specificity. Conclusion. TCR repertoire sequencing from whole blood reliably measures the adaptive immune response to SARS-CoV-2 soon after viral antigenic exposure (before antibodies are typically detectable) as well as at later time points, and distinguishes post-infection vs. vaccine immune responses with high specificity. This approach to characterizing the cellular immune response has applications in clinical diagnostics as well as vaccine development and monitoring.

2.
Open Forum Infectious Diseases ; 8(SUPPL 1):S325-S326, 2021.
Article in English | EMBASE | ID: covidwho-1746546

ABSTRACT

Background. Approximately 10-20% of patients with critical COVID-19 harbor neutralizing autoantibodies (auto-Abs) that target type I interferons (IFN), a family of cytokines that induce critical innate immune defense mechanisms upon viral infection. Studies to date indicate that these auto-Abs are mostly detected in men over age 65. Methods. We screened for type I IFN serum auto-Abs in sera collected < 21 days post-symptom onset in a subset of 103 COVID-19 inpatients and 24 outpatients drawn from a large prospective cohort study of SARS-CoV-2 infected patients enrolled across U.S. Military Treatment Facilities. The mean age of this n = 127 subset of study participants was 55.2 years (SD = 15.2 years, range 7.7 - 86.2 years), and 86/127 (67.7%) were male. Results. Among those hospitalized 49/103 (47.6%) had severe COVID-19 (required at least high flow oxygen), and nine subjects died. We detected neutralizing auto-Abs against IFN-α, IFN-ω, or both, in four inpatients (3.9%, 8.2% of severe cases), with no auto-Abs detected in outpatients. Three of these patients were white males over the age of 62, all with multiple comorbidities;two of whom died and the third requiring high flow oxygen therapy. The fourth patient was a 36-year-old Hispanic female with a history of obesity who required mechanical ventilation during her admission for COVID-19. Conclusion. These findings support the association between type I IFN auto-antibody production and life-threatening COVID-19. With further validation, reliable high-throughput screening for type I IFN auto-Abs may inform diagnosis, pathogenesis and treatment strategies for COVID-19, particularly in older males. Our finding of type I IFN auto-Ab production in a younger female prompts further study of this autoimmune phenotype in a broader population.

3.
Blood Cancer J ; 11(9): 151, 2021 09 14.
Article in English | MEDLINE | ID: covidwho-1408475

ABSTRACT

The ability of patients with hematologic malignancies (HM) to develop an effective humoral immune response after COVID-19 is unknown. A prospective study was performed to monitor the immune response to SARS-CoV-2 of patients with follicular lymphoma (FL), diffuse large B-cell lymphoma (DLBCL), chronic lymphoproliferative disorders (CLD), multiple myeloma (MM), or myelodysplastic/myeloproliferative syndromes (MDS/MPN). Antibody (Ab) levels to the SARS-CoV-2 nucleocapsid (N) and spike (S) protein were measured at +1, +3, +6 months after nasal swabs became PCR-negative. Forty-five patients (9 FL, 8 DLBCL, 8 CLD, 10 MM, 10 MDS/MPS) and 18 controls were studied. Mean anti-N and anti-S-Ab levels were similar between HM patients and controls, and shared the same behavior, with anti-N Ab levels declining at +6 months and anti-S-Ab remaining stable. Seroconversion rates were lower in HM patients than in controls. In lymphoma patients mean Ab levels and seroconversion rates were lower than in other HM patients, primarily because all nine patients who had received rituximab within 6 months before COVID-19 failed to produce anti-N and anti-S-Ab. Only one patient requiring hematological treatment after COVID-19 lost seropositivity after 6 months. No reinfections were observed. These results may inform vaccination policies and clinical management of HM patients.


Subject(s)
COVID-19/immunology , Hematologic Neoplasms/immunology , Immunity, Humoral/drug effects , Rituximab/pharmacology , SARS-CoV-2/immunology , Adult , Aged , Aged, 80 and over , Antibodies, Viral/drug effects , Antibodies, Viral/metabolism , Antibody Formation/drug effects , Antibody Formation/physiology , Antibody Specificity/drug effects , COVID-19/complications , COVID-19/epidemiology , COVID-19/therapy , Case-Control Studies , Female , Follow-Up Studies , Hematologic Neoplasms/complications , Hematologic Neoplasms/drug therapy , Hematologic Neoplasms/epidemiology , Hospitalization , Humans , Italy/epidemiology , Longitudinal Studies , Male , Middle Aged , Rituximab/therapeutic use
4.
Journal of Experimental Medicine ; 218(7), 2021.
Article in English | CAB Abstracts | ID: covidwho-1327310

ABSTRACT

Patients with biallelic loss-of-function variants of AIRE suffer from autoimmune polyendocrine syndrome type-1 (APS-1) and produce a broad range of autoantibodies (auto-Abs), including circulating auto-Abs neutralizing most type I interferons (IFNs). These auto-Abs were recently reported to account for at least 10% of cases of life-threatening COVID-19 pneumonia in the general population. We report 22 APS-1 patients from 21 kindreds in seven countries, aged between 8 and 48 yr and infected with SARS-CoV-2 since February 2020. The 21 patients tested had auto-Abs neutralizing IFN-a subtypes and/or IFN-;one had anti-IFN-beta and another anti-IFN-T, but none had anti-IFN-. Strikingly, 19 patients (86%) were hospitalized for COVID-19 pneumonia, including 15 (68%) admitted to an intensive care unit, 11 (50%) who required mechanical ventilation, and four (18%) who died. Ambulatory disease in three patients (14%) was possibly accounted for by prior or early specific interventions. Preexisting auto-Abs neutralizing type I IFNs in APS-1 patients confer a very high risk of life-threatening COVID-19 pneumonia at any age.

SELECTION OF CITATIONS
SEARCH DETAIL